May 9, 2023 – Pfizer and Thermo Fisher Scientific announced they have entered into a collaboration agreement to help increase local access to next-generation sequencing (NGS)-based testing for lung and breast cancer patients in more than 30 countries across Latin America, Africa, the Middle East and Asia where advanced genomic testing has previously been limited or unavailable. Access to local NGS testing can help to provide faster analysis of associated genes, empowering healthcare providers to select the right therapy for that individual patient.
Under the agreement, Thermo Fisher will identify local labs that will be using the company’s NGS technology and ensure they have the necessary infrastructure, trained staff, and quality control measures to meet industry standards for NGS testing services for breast and lung cancer. Pfizer will explore ways to enable affordable patient access for NGS testing for these types of cancer and work to raise healthcare provider awareness regarding the benefits of advanced testing. The two companies will continue to evaluate opportunities to expand geographically and to expand testing for other types of cancer.
Single gene testing has historically been used to match patients with appropriate targeted therapies. However, this can be a time intensive process if sequential tests are needed and there may not be enough tissue to run every test – which may require additional biopsy procedures. As more targeted therapies are available that can be matched through a broader set of genomic markers, next-generation sequencing is quickly replacing sequential, single biomarker tests. By screening a single tumor tissue or blood sample for multiple biomarkers simultaneously, NGS can provide clinical teams with rapid and actionable genomic insights to help inform precision oncology treatment decisions for eligible patients.
A retrospective observational real-world data study looked at newly diagnosed stage IV non-small cell lung cancer patients and found outcomes such as apparent survival and time to next treatment were significantly compromised if actionable mutations were identified after systemic treatment was initiated. However, when treatment was initiated based on molecular results, patients experienced better outcomes compared to patients who were treated prior to receiving molecular results, supporting the need for rapid molecular testing to inform better treatment decisions.